3.606 \(\int (d+e x^2)^4 (a+b \sinh ^{-1}(c x)) \, dx\)

Optimal. Leaf size=312 \[ \frac{6}{5} d^2 e^2 x^5 \left (a+b \sinh ^{-1}(c x)\right )+\frac{4}{3} d^3 e x^3 \left (a+b \sinh ^{-1}(c x)\right )+d^4 x \left (a+b \sinh ^{-1}(c x)\right )+\frac{4}{7} d e^3 x^7 \left (a+b \sinh ^{-1}(c x)\right )+\frac{1}{9} e^4 x^9 \left (a+b \sinh ^{-1}(c x)\right )-\frac{2 b e^2 \left (c^2 x^2+1\right )^{5/2} \left (63 c^4 d^2-90 c^2 d e+35 e^2\right )}{525 c^9}-\frac{4 b e \left (c^2 x^2+1\right )^{3/2} \left (-189 c^4 d^2 e+105 c^6 d^3+135 c^2 d e^2-35 e^3\right )}{945 c^9}-\frac{b \sqrt{c^2 x^2+1} \left (378 c^4 d^2 e^2-420 c^6 d^3 e+315 c^8 d^4-180 c^2 d e^3+35 e^4\right )}{315 c^9}-\frac{4 b e^3 \left (c^2 x^2+1\right )^{7/2} \left (9 c^2 d-7 e\right )}{441 c^9}-\frac{b e^4 \left (c^2 x^2+1\right )^{9/2}}{81 c^9} \]

[Out]

-(b*(315*c^8*d^4 - 420*c^6*d^3*e + 378*c^4*d^2*e^2 - 180*c^2*d*e^3 + 35*e^4)*Sqrt[1 + c^2*x^2])/(315*c^9) - (4
*b*e*(105*c^6*d^3 - 189*c^4*d^2*e + 135*c^2*d*e^2 - 35*e^3)*(1 + c^2*x^2)^(3/2))/(945*c^9) - (2*b*e^2*(63*c^4*
d^2 - 90*c^2*d*e + 35*e^2)*(1 + c^2*x^2)^(5/2))/(525*c^9) - (4*b*(9*c^2*d - 7*e)*e^3*(1 + c^2*x^2)^(7/2))/(441
*c^9) - (b*e^4*(1 + c^2*x^2)^(9/2))/(81*c^9) + d^4*x*(a + b*ArcSinh[c*x]) + (4*d^3*e*x^3*(a + b*ArcSinh[c*x]))
/3 + (6*d^2*e^2*x^5*(a + b*ArcSinh[c*x]))/5 + (4*d*e^3*x^7*(a + b*ArcSinh[c*x]))/7 + (e^4*x^9*(a + b*ArcSinh[c
*x]))/9

________________________________________________________________________________________

Rubi [A]  time = 0.350649, antiderivative size = 312, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.278, Rules used = {194, 5704, 12, 1799, 1850} \[ \frac{6}{5} d^2 e^2 x^5 \left (a+b \sinh ^{-1}(c x)\right )+\frac{4}{3} d^3 e x^3 \left (a+b \sinh ^{-1}(c x)\right )+d^4 x \left (a+b \sinh ^{-1}(c x)\right )+\frac{4}{7} d e^3 x^7 \left (a+b \sinh ^{-1}(c x)\right )+\frac{1}{9} e^4 x^9 \left (a+b \sinh ^{-1}(c x)\right )-\frac{2 b e^2 \left (c^2 x^2+1\right )^{5/2} \left (63 c^4 d^2-90 c^2 d e+35 e^2\right )}{525 c^9}-\frac{4 b e \left (c^2 x^2+1\right )^{3/2} \left (-189 c^4 d^2 e+105 c^6 d^3+135 c^2 d e^2-35 e^3\right )}{945 c^9}-\frac{b \sqrt{c^2 x^2+1} \left (378 c^4 d^2 e^2-420 c^6 d^3 e+315 c^8 d^4-180 c^2 d e^3+35 e^4\right )}{315 c^9}-\frac{4 b e^3 \left (c^2 x^2+1\right )^{7/2} \left (9 c^2 d-7 e\right )}{441 c^9}-\frac{b e^4 \left (c^2 x^2+1\right )^{9/2}}{81 c^9} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)^4*(a + b*ArcSinh[c*x]),x]

[Out]

-(b*(315*c^8*d^4 - 420*c^6*d^3*e + 378*c^4*d^2*e^2 - 180*c^2*d*e^3 + 35*e^4)*Sqrt[1 + c^2*x^2])/(315*c^9) - (4
*b*e*(105*c^6*d^3 - 189*c^4*d^2*e + 135*c^2*d*e^2 - 35*e^3)*(1 + c^2*x^2)^(3/2))/(945*c^9) - (2*b*e^2*(63*c^4*
d^2 - 90*c^2*d*e + 35*e^2)*(1 + c^2*x^2)^(5/2))/(525*c^9) - (4*b*(9*c^2*d - 7*e)*e^3*(1 + c^2*x^2)^(7/2))/(441
*c^9) - (b*e^4*(1 + c^2*x^2)^(9/2))/(81*c^9) + d^4*x*(a + b*ArcSinh[c*x]) + (4*d^3*e*x^3*(a + b*ArcSinh[c*x]))
/3 + (6*d^2*e^2*x^5*(a + b*ArcSinh[c*x]))/5 + (4*d*e^3*x^7*(a + b*ArcSinh[c*x]))/7 + (e^4*x^9*(a + b*ArcSinh[c
*x]))/9

Rule 194

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n)^p, x], x] /; FreeQ[{a, b}, x]
&& IGtQ[n, 0] && IGtQ[p, 0]

Rule 5704

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2
)^p, x]}, Dist[a + b*ArcSinh[c*x], u, x] - Dist[b*c, Int[SimplifyIntegrand[u/Sqrt[1 + c^2*x^2], x], x], x]] /;
 FreeQ[{a, b, c, d, e}, x] && NeQ[e, c^2*d] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1799

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*SubstFor[x^2,
 Pq, x]*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x^2] && IntegerQ[(m - 1)/2]

Rule 1850

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^n)^p, x], x] /; FreeQ[
{a, b, n}, x] && PolyQ[Pq, x] && (IGtQ[p, 0] || EqQ[n, 1])

Rubi steps

\begin{align*} \int \left (d+e x^2\right )^4 \left (a+b \sinh ^{-1}(c x)\right ) \, dx &=d^4 x \left (a+b \sinh ^{-1}(c x)\right )+\frac{4}{3} d^3 e x^3 \left (a+b \sinh ^{-1}(c x)\right )+\frac{6}{5} d^2 e^2 x^5 \left (a+b \sinh ^{-1}(c x)\right )+\frac{4}{7} d e^3 x^7 \left (a+b \sinh ^{-1}(c x)\right )+\frac{1}{9} e^4 x^9 \left (a+b \sinh ^{-1}(c x)\right )-(b c) \int \frac{x \left (315 d^4+420 d^3 e x^2+378 d^2 e^2 x^4+180 d e^3 x^6+35 e^4 x^8\right )}{315 \sqrt{1+c^2 x^2}} \, dx\\ &=d^4 x \left (a+b \sinh ^{-1}(c x)\right )+\frac{4}{3} d^3 e x^3 \left (a+b \sinh ^{-1}(c x)\right )+\frac{6}{5} d^2 e^2 x^5 \left (a+b \sinh ^{-1}(c x)\right )+\frac{4}{7} d e^3 x^7 \left (a+b \sinh ^{-1}(c x)\right )+\frac{1}{9} e^4 x^9 \left (a+b \sinh ^{-1}(c x)\right )-\frac{1}{315} (b c) \int \frac{x \left (315 d^4+420 d^3 e x^2+378 d^2 e^2 x^4+180 d e^3 x^6+35 e^4 x^8\right )}{\sqrt{1+c^2 x^2}} \, dx\\ &=d^4 x \left (a+b \sinh ^{-1}(c x)\right )+\frac{4}{3} d^3 e x^3 \left (a+b \sinh ^{-1}(c x)\right )+\frac{6}{5} d^2 e^2 x^5 \left (a+b \sinh ^{-1}(c x)\right )+\frac{4}{7} d e^3 x^7 \left (a+b \sinh ^{-1}(c x)\right )+\frac{1}{9} e^4 x^9 \left (a+b \sinh ^{-1}(c x)\right )-\frac{1}{630} (b c) \operatorname{Subst}\left (\int \frac{315 d^4+420 d^3 e x+378 d^2 e^2 x^2+180 d e^3 x^3+35 e^4 x^4}{\sqrt{1+c^2 x}} \, dx,x,x^2\right )\\ &=d^4 x \left (a+b \sinh ^{-1}(c x)\right )+\frac{4}{3} d^3 e x^3 \left (a+b \sinh ^{-1}(c x)\right )+\frac{6}{5} d^2 e^2 x^5 \left (a+b \sinh ^{-1}(c x)\right )+\frac{4}{7} d e^3 x^7 \left (a+b \sinh ^{-1}(c x)\right )+\frac{1}{9} e^4 x^9 \left (a+b \sinh ^{-1}(c x)\right )-\frac{1}{630} (b c) \operatorname{Subst}\left (\int \left (\frac{315 c^8 d^4-420 c^6 d^3 e+378 c^4 d^2 e^2-180 c^2 d e^3+35 e^4}{c^8 \sqrt{1+c^2 x}}+\frac{4 e \left (105 c^6 d^3-189 c^4 d^2 e+135 c^2 d e^2-35 e^3\right ) \sqrt{1+c^2 x}}{c^8}+\frac{6 e^2 \left (63 c^4 d^2-90 c^2 d e+35 e^2\right ) \left (1+c^2 x\right )^{3/2}}{c^8}+\frac{20 \left (9 c^2 d-7 e\right ) e^3 \left (1+c^2 x\right )^{5/2}}{c^8}+\frac{35 e^4 \left (1+c^2 x\right )^{7/2}}{c^8}\right ) \, dx,x,x^2\right )\\ &=-\frac{b \left (315 c^8 d^4-420 c^6 d^3 e+378 c^4 d^2 e^2-180 c^2 d e^3+35 e^4\right ) \sqrt{1+c^2 x^2}}{315 c^9}-\frac{4 b e \left (105 c^6 d^3-189 c^4 d^2 e+135 c^2 d e^2-35 e^3\right ) \left (1+c^2 x^2\right )^{3/2}}{945 c^9}-\frac{2 b e^2 \left (63 c^4 d^2-90 c^2 d e+35 e^2\right ) \left (1+c^2 x^2\right )^{5/2}}{525 c^9}-\frac{4 b \left (9 c^2 d-7 e\right ) e^3 \left (1+c^2 x^2\right )^{7/2}}{441 c^9}-\frac{b e^4 \left (1+c^2 x^2\right )^{9/2}}{81 c^9}+d^4 x \left (a+b \sinh ^{-1}(c x)\right )+\frac{4}{3} d^3 e x^3 \left (a+b \sinh ^{-1}(c x)\right )+\frac{6}{5} d^2 e^2 x^5 \left (a+b \sinh ^{-1}(c x)\right )+\frac{4}{7} d e^3 x^7 \left (a+b \sinh ^{-1}(c x)\right )+\frac{1}{9} e^4 x^9 \left (a+b \sinh ^{-1}(c x)\right )\\ \end{align*}

Mathematica [A]  time = 0.343265, size = 260, normalized size = 0.83 \[ \frac{315 a x \left (378 d^2 e^2 x^4+420 d^3 e x^2+315 d^4+180 d e^3 x^6+35 e^4 x^8\right )-\frac{b \sqrt{c^2 x^2+1} \left (c^8 \left (23814 d^2 e^2 x^4+44100 d^3 e x^2+99225 d^4+8100 d e^3 x^6+1225 e^4 x^8\right )-8 c^6 e \left (3969 d^2 e x^2+11025 d^3+1215 d e^2 x^4+175 e^3 x^6\right )+48 c^4 e^2 \left (1323 d^2+270 d e x^2+35 e^2 x^4\right )-320 c^2 e^3 \left (81 d+7 e x^2\right )+4480 e^4\right )}{c^9}+315 b x \sinh ^{-1}(c x) \left (378 d^2 e^2 x^4+420 d^3 e x^2+315 d^4+180 d e^3 x^6+35 e^4 x^8\right )}{99225} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)^4*(a + b*ArcSinh[c*x]),x]

[Out]

(315*a*x*(315*d^4 + 420*d^3*e*x^2 + 378*d^2*e^2*x^4 + 180*d*e^3*x^6 + 35*e^4*x^8) - (b*Sqrt[1 + c^2*x^2]*(4480
*e^4 - 320*c^2*e^3*(81*d + 7*e*x^2) + 48*c^4*e^2*(1323*d^2 + 270*d*e*x^2 + 35*e^2*x^4) - 8*c^6*e*(11025*d^3 +
3969*d^2*e*x^2 + 1215*d*e^2*x^4 + 175*e^3*x^6) + c^8*(99225*d^4 + 44100*d^3*e*x^2 + 23814*d^2*e^2*x^4 + 8100*d
*e^3*x^6 + 1225*e^4*x^8)))/c^9 + 315*b*x*(315*d^4 + 420*d^3*e*x^2 + 378*d^2*e^2*x^4 + 180*d*e^3*x^6 + 35*e^4*x
^8)*ArcSinh[c*x])/99225

________________________________________________________________________________________

Maple [A]  time = 0.014, size = 451, normalized size = 1.5 \begin{align*}{\frac{1}{c} \left ({\frac{a}{{c}^{8}} \left ({\frac{{e}^{4}{c}^{9}{x}^{9}}{9}}+{\frac{4\,{c}^{9}d{e}^{3}{x}^{7}}{7}}+{\frac{6\,{c}^{9}{d}^{2}{e}^{2}{x}^{5}}{5}}+{\frac{4\,{c}^{9}{d}^{3}e{x}^{3}}{3}}+{c}^{9}{d}^{4}x \right ) }+{\frac{b}{{c}^{8}} \left ({\frac{{\it Arcsinh} \left ( cx \right ){e}^{4}{c}^{9}{x}^{9}}{9}}+{\frac{4\,{\it Arcsinh} \left ( cx \right ){c}^{9}d{e}^{3}{x}^{7}}{7}}+{\frac{6\,{\it Arcsinh} \left ( cx \right ){c}^{9}{d}^{2}{e}^{2}{x}^{5}}{5}}+{\frac{4\,{\it Arcsinh} \left ( cx \right ){c}^{9}{d}^{3}e{x}^{3}}{3}}+{\it Arcsinh} \left ( cx \right ){c}^{9}{d}^{4}x-{\frac{{e}^{4}}{9} \left ({\frac{{c}^{8}{x}^{8}}{9}\sqrt{{c}^{2}{x}^{2}+1}}-{\frac{8\,{c}^{6}{x}^{6}}{63}\sqrt{{c}^{2}{x}^{2}+1}}+{\frac{16\,{c}^{4}{x}^{4}}{105}\sqrt{{c}^{2}{x}^{2}+1}}-{\frac{64\,{c}^{2}{x}^{2}}{315}\sqrt{{c}^{2}{x}^{2}+1}}+{\frac{128}{315}\sqrt{{c}^{2}{x}^{2}+1}} \right ) }-{\frac{4\,{c}^{2}d{e}^{3}}{7} \left ({\frac{{c}^{6}{x}^{6}}{7}\sqrt{{c}^{2}{x}^{2}+1}}-{\frac{6\,{c}^{4}{x}^{4}}{35}\sqrt{{c}^{2}{x}^{2}+1}}+{\frac{8\,{c}^{2}{x}^{2}}{35}\sqrt{{c}^{2}{x}^{2}+1}}-{\frac{16}{35}\sqrt{{c}^{2}{x}^{2}+1}} \right ) }-{\frac{6\,{c}^{4}{d}^{2}{e}^{2}}{5} \left ({\frac{{c}^{4}{x}^{4}}{5}\sqrt{{c}^{2}{x}^{2}+1}}-{\frac{4\,{c}^{2}{x}^{2}}{15}\sqrt{{c}^{2}{x}^{2}+1}}+{\frac{8}{15}\sqrt{{c}^{2}{x}^{2}+1}} \right ) }-{\frac{4\,{c}^{6}{d}^{3}e}{3} \left ({\frac{{c}^{2}{x}^{2}}{3}\sqrt{{c}^{2}{x}^{2}+1}}-{\frac{2}{3}\sqrt{{c}^{2}{x}^{2}+1}} \right ) }-{c}^{8}{d}^{4}\sqrt{{c}^{2}{x}^{2}+1} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^4*(a+b*arcsinh(c*x)),x)

[Out]

1/c*(a/c^8*(1/9*e^4*c^9*x^9+4/7*c^9*d*e^3*x^7+6/5*c^9*d^2*e^2*x^5+4/3*c^9*d^3*e*x^3+c^9*d^4*x)+b/c^8*(1/9*arcs
inh(c*x)*e^4*c^9*x^9+4/7*arcsinh(c*x)*c^9*d*e^3*x^7+6/5*arcsinh(c*x)*c^9*d^2*e^2*x^5+4/3*arcsinh(c*x)*c^9*d^3*
e*x^3+arcsinh(c*x)*c^9*d^4*x-1/9*e^4*(1/9*c^8*x^8*(c^2*x^2+1)^(1/2)-8/63*c^6*x^6*(c^2*x^2+1)^(1/2)+16/105*c^4*
x^4*(c^2*x^2+1)^(1/2)-64/315*c^2*x^2*(c^2*x^2+1)^(1/2)+128/315*(c^2*x^2+1)^(1/2))-4/7*c^2*d*e^3*(1/7*c^6*x^6*(
c^2*x^2+1)^(1/2)-6/35*c^4*x^4*(c^2*x^2+1)^(1/2)+8/35*c^2*x^2*(c^2*x^2+1)^(1/2)-16/35*(c^2*x^2+1)^(1/2))-6/5*c^
4*d^2*e^2*(1/5*c^4*x^4*(c^2*x^2+1)^(1/2)-4/15*c^2*x^2*(c^2*x^2+1)^(1/2)+8/15*(c^2*x^2+1)^(1/2))-4/3*c^6*d^3*e*
(1/3*c^2*x^2*(c^2*x^2+1)^(1/2)-2/3*(c^2*x^2+1)^(1/2))-c^8*d^4*(c^2*x^2+1)^(1/2)))

________________________________________________________________________________________

Maxima [A]  time = 1.22702, size = 560, normalized size = 1.79 \begin{align*} \frac{1}{9} \, a e^{4} x^{9} + \frac{4}{7} \, a d e^{3} x^{7} + \frac{6}{5} \, a d^{2} e^{2} x^{5} + \frac{4}{3} \, a d^{3} e x^{3} + \frac{4}{9} \,{\left (3 \, x^{3} \operatorname{arsinh}\left (c x\right ) - c{\left (\frac{\sqrt{c^{2} x^{2} + 1} x^{2}}{c^{2}} - \frac{2 \, \sqrt{c^{2} x^{2} + 1}}{c^{4}}\right )}\right )} b d^{3} e + \frac{2}{25} \,{\left (15 \, x^{5} \operatorname{arsinh}\left (c x\right ) -{\left (\frac{3 \, \sqrt{c^{2} x^{2} + 1} x^{4}}{c^{2}} - \frac{4 \, \sqrt{c^{2} x^{2} + 1} x^{2}}{c^{4}} + \frac{8 \, \sqrt{c^{2} x^{2} + 1}}{c^{6}}\right )} c\right )} b d^{2} e^{2} + \frac{4}{245} \,{\left (35 \, x^{7} \operatorname{arsinh}\left (c x\right ) -{\left (\frac{5 \, \sqrt{c^{2} x^{2} + 1} x^{6}}{c^{2}} - \frac{6 \, \sqrt{c^{2} x^{2} + 1} x^{4}}{c^{4}} + \frac{8 \, \sqrt{c^{2} x^{2} + 1} x^{2}}{c^{6}} - \frac{16 \, \sqrt{c^{2} x^{2} + 1}}{c^{8}}\right )} c\right )} b d e^{3} + \frac{1}{2835} \,{\left (315 \, x^{9} \operatorname{arsinh}\left (c x\right ) -{\left (\frac{35 \, \sqrt{c^{2} x^{2} + 1} x^{8}}{c^{2}} - \frac{40 \, \sqrt{c^{2} x^{2} + 1} x^{6}}{c^{4}} + \frac{48 \, \sqrt{c^{2} x^{2} + 1} x^{4}}{c^{6}} - \frac{64 \, \sqrt{c^{2} x^{2} + 1} x^{2}}{c^{8}} + \frac{128 \, \sqrt{c^{2} x^{2} + 1}}{c^{10}}\right )} c\right )} b e^{4} + a d^{4} x + \frac{{\left (c x \operatorname{arsinh}\left (c x\right ) - \sqrt{c^{2} x^{2} + 1}\right )} b d^{4}}{c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^4*(a+b*arcsinh(c*x)),x, algorithm="maxima")

[Out]

1/9*a*e^4*x^9 + 4/7*a*d*e^3*x^7 + 6/5*a*d^2*e^2*x^5 + 4/3*a*d^3*e*x^3 + 4/9*(3*x^3*arcsinh(c*x) - c*(sqrt(c^2*
x^2 + 1)*x^2/c^2 - 2*sqrt(c^2*x^2 + 1)/c^4))*b*d^3*e + 2/25*(15*x^5*arcsinh(c*x) - (3*sqrt(c^2*x^2 + 1)*x^4/c^
2 - 4*sqrt(c^2*x^2 + 1)*x^2/c^4 + 8*sqrt(c^2*x^2 + 1)/c^6)*c)*b*d^2*e^2 + 4/245*(35*x^7*arcsinh(c*x) - (5*sqrt
(c^2*x^2 + 1)*x^6/c^2 - 6*sqrt(c^2*x^2 + 1)*x^4/c^4 + 8*sqrt(c^2*x^2 + 1)*x^2/c^6 - 16*sqrt(c^2*x^2 + 1)/c^8)*
c)*b*d*e^3 + 1/2835*(315*x^9*arcsinh(c*x) - (35*sqrt(c^2*x^2 + 1)*x^8/c^2 - 40*sqrt(c^2*x^2 + 1)*x^6/c^4 + 48*
sqrt(c^2*x^2 + 1)*x^4/c^6 - 64*sqrt(c^2*x^2 + 1)*x^2/c^8 + 128*sqrt(c^2*x^2 + 1)/c^10)*c)*b*e^4 + a*d^4*x + (c
*x*arcsinh(c*x) - sqrt(c^2*x^2 + 1))*b*d^4/c

________________________________________________________________________________________

Fricas [A]  time = 2.48825, size = 803, normalized size = 2.57 \begin{align*} \frac{11025 \, a c^{9} e^{4} x^{9} + 56700 \, a c^{9} d e^{3} x^{7} + 119070 \, a c^{9} d^{2} e^{2} x^{5} + 132300 \, a c^{9} d^{3} e x^{3} + 99225 \, a c^{9} d^{4} x + 315 \,{\left (35 \, b c^{9} e^{4} x^{9} + 180 \, b c^{9} d e^{3} x^{7} + 378 \, b c^{9} d^{2} e^{2} x^{5} + 420 \, b c^{9} d^{3} e x^{3} + 315 \, b c^{9} d^{4} x\right )} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right ) -{\left (1225 \, b c^{8} e^{4} x^{8} + 99225 \, b c^{8} d^{4} - 88200 \, b c^{6} d^{3} e + 63504 \, b c^{4} d^{2} e^{2} - 25920 \, b c^{2} d e^{3} + 100 \,{\left (81 \, b c^{8} d e^{3} - 14 \, b c^{6} e^{4}\right )} x^{6} + 4480 \, b e^{4} + 6 \,{\left (3969 \, b c^{8} d^{2} e^{2} - 1620 \, b c^{6} d e^{3} + 280 \, b c^{4} e^{4}\right )} x^{4} + 4 \,{\left (11025 \, b c^{8} d^{3} e - 7938 \, b c^{6} d^{2} e^{2} + 3240 \, b c^{4} d e^{3} - 560 \, b c^{2} e^{4}\right )} x^{2}\right )} \sqrt{c^{2} x^{2} + 1}}{99225 \, c^{9}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^4*(a+b*arcsinh(c*x)),x, algorithm="fricas")

[Out]

1/99225*(11025*a*c^9*e^4*x^9 + 56700*a*c^9*d*e^3*x^7 + 119070*a*c^9*d^2*e^2*x^5 + 132300*a*c^9*d^3*e*x^3 + 992
25*a*c^9*d^4*x + 315*(35*b*c^9*e^4*x^9 + 180*b*c^9*d*e^3*x^7 + 378*b*c^9*d^2*e^2*x^5 + 420*b*c^9*d^3*e*x^3 + 3
15*b*c^9*d^4*x)*log(c*x + sqrt(c^2*x^2 + 1)) - (1225*b*c^8*e^4*x^8 + 99225*b*c^8*d^4 - 88200*b*c^6*d^3*e + 635
04*b*c^4*d^2*e^2 - 25920*b*c^2*d*e^3 + 100*(81*b*c^8*d*e^3 - 14*b*c^6*e^4)*x^6 + 4480*b*e^4 + 6*(3969*b*c^8*d^
2*e^2 - 1620*b*c^6*d*e^3 + 280*b*c^4*e^4)*x^4 + 4*(11025*b*c^8*d^3*e - 7938*b*c^6*d^2*e^2 + 3240*b*c^4*d*e^3 -
 560*b*c^2*e^4)*x^2)*sqrt(c^2*x^2 + 1))/c^9

________________________________________________________________________________________

Sympy [A]  time = 24.2907, size = 593, normalized size = 1.9 \begin{align*} \begin{cases} a d^{4} x + \frac{4 a d^{3} e x^{3}}{3} + \frac{6 a d^{2} e^{2} x^{5}}{5} + \frac{4 a d e^{3} x^{7}}{7} + \frac{a e^{4} x^{9}}{9} + b d^{4} x \operatorname{asinh}{\left (c x \right )} + \frac{4 b d^{3} e x^{3} \operatorname{asinh}{\left (c x \right )}}{3} + \frac{6 b d^{2} e^{2} x^{5} \operatorname{asinh}{\left (c x \right )}}{5} + \frac{4 b d e^{3} x^{7} \operatorname{asinh}{\left (c x \right )}}{7} + \frac{b e^{4} x^{9} \operatorname{asinh}{\left (c x \right )}}{9} - \frac{b d^{4} \sqrt{c^{2} x^{2} + 1}}{c} - \frac{4 b d^{3} e x^{2} \sqrt{c^{2} x^{2} + 1}}{9 c} - \frac{6 b d^{2} e^{2} x^{4} \sqrt{c^{2} x^{2} + 1}}{25 c} - \frac{4 b d e^{3} x^{6} \sqrt{c^{2} x^{2} + 1}}{49 c} - \frac{b e^{4} x^{8} \sqrt{c^{2} x^{2} + 1}}{81 c} + \frac{8 b d^{3} e \sqrt{c^{2} x^{2} + 1}}{9 c^{3}} + \frac{8 b d^{2} e^{2} x^{2} \sqrt{c^{2} x^{2} + 1}}{25 c^{3}} + \frac{24 b d e^{3} x^{4} \sqrt{c^{2} x^{2} + 1}}{245 c^{3}} + \frac{8 b e^{4} x^{6} \sqrt{c^{2} x^{2} + 1}}{567 c^{3}} - \frac{16 b d^{2} e^{2} \sqrt{c^{2} x^{2} + 1}}{25 c^{5}} - \frac{32 b d e^{3} x^{2} \sqrt{c^{2} x^{2} + 1}}{245 c^{5}} - \frac{16 b e^{4} x^{4} \sqrt{c^{2} x^{2} + 1}}{945 c^{5}} + \frac{64 b d e^{3} \sqrt{c^{2} x^{2} + 1}}{245 c^{7}} + \frac{64 b e^{4} x^{2} \sqrt{c^{2} x^{2} + 1}}{2835 c^{7}} - \frac{128 b e^{4} \sqrt{c^{2} x^{2} + 1}}{2835 c^{9}} & \text{for}\: c \neq 0 \\a \left (d^{4} x + \frac{4 d^{3} e x^{3}}{3} + \frac{6 d^{2} e^{2} x^{5}}{5} + \frac{4 d e^{3} x^{7}}{7} + \frac{e^{4} x^{9}}{9}\right ) & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**4*(a+b*asinh(c*x)),x)

[Out]

Piecewise((a*d**4*x + 4*a*d**3*e*x**3/3 + 6*a*d**2*e**2*x**5/5 + 4*a*d*e**3*x**7/7 + a*e**4*x**9/9 + b*d**4*x*
asinh(c*x) + 4*b*d**3*e*x**3*asinh(c*x)/3 + 6*b*d**2*e**2*x**5*asinh(c*x)/5 + 4*b*d*e**3*x**7*asinh(c*x)/7 + b
*e**4*x**9*asinh(c*x)/9 - b*d**4*sqrt(c**2*x**2 + 1)/c - 4*b*d**3*e*x**2*sqrt(c**2*x**2 + 1)/(9*c) - 6*b*d**2*
e**2*x**4*sqrt(c**2*x**2 + 1)/(25*c) - 4*b*d*e**3*x**6*sqrt(c**2*x**2 + 1)/(49*c) - b*e**4*x**8*sqrt(c**2*x**2
 + 1)/(81*c) + 8*b*d**3*e*sqrt(c**2*x**2 + 1)/(9*c**3) + 8*b*d**2*e**2*x**2*sqrt(c**2*x**2 + 1)/(25*c**3) + 24
*b*d*e**3*x**4*sqrt(c**2*x**2 + 1)/(245*c**3) + 8*b*e**4*x**6*sqrt(c**2*x**2 + 1)/(567*c**3) - 16*b*d**2*e**2*
sqrt(c**2*x**2 + 1)/(25*c**5) - 32*b*d*e**3*x**2*sqrt(c**2*x**2 + 1)/(245*c**5) - 16*b*e**4*x**4*sqrt(c**2*x**
2 + 1)/(945*c**5) + 64*b*d*e**3*sqrt(c**2*x**2 + 1)/(245*c**7) + 64*b*e**4*x**2*sqrt(c**2*x**2 + 1)/(2835*c**7
) - 128*b*e**4*sqrt(c**2*x**2 + 1)/(2835*c**9), Ne(c, 0)), (a*(d**4*x + 4*d**3*e*x**3/3 + 6*d**2*e**2*x**5/5 +
 4*d*e**3*x**7/7 + e**4*x**9/9), True))

________________________________________________________________________________________

Giac [A]  time = 1.84178, size = 547, normalized size = 1.75 \begin{align*}{\left (x \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right ) - \frac{\sqrt{c^{2} x^{2} + 1}}{c}\right )} b d^{4} + a d^{4} x + \frac{1}{2835} \,{\left (315 \, a x^{9} +{\left (315 \, x^{9} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right ) - \frac{35 \,{\left (c^{2} x^{2} + 1\right )}^{\frac{9}{2}} - 180 \,{\left (c^{2} x^{2} + 1\right )}^{\frac{7}{2}} + 378 \,{\left (c^{2} x^{2} + 1\right )}^{\frac{5}{2}} - 420 \,{\left (c^{2} x^{2} + 1\right )}^{\frac{3}{2}} + 315 \, \sqrt{c^{2} x^{2} + 1}}{c^{9}}\right )} b\right )} e^{4} + \frac{4}{245} \,{\left (35 \, a d x^{7} +{\left (35 \, x^{7} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right ) - \frac{5 \,{\left (c^{2} x^{2} + 1\right )}^{\frac{7}{2}} - 21 \,{\left (c^{2} x^{2} + 1\right )}^{\frac{5}{2}} + 35 \,{\left (c^{2} x^{2} + 1\right )}^{\frac{3}{2}} - 35 \, \sqrt{c^{2} x^{2} + 1}}{c^{7}}\right )} b d\right )} e^{3} + \frac{2}{25} \,{\left (15 \, a d^{2} x^{5} +{\left (15 \, x^{5} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right ) - \frac{3 \,{\left (c^{2} x^{2} + 1\right )}^{\frac{5}{2}} - 10 \,{\left (c^{2} x^{2} + 1\right )}^{\frac{3}{2}} + 15 \, \sqrt{c^{2} x^{2} + 1}}{c^{5}}\right )} b d^{2}\right )} e^{2} + \frac{4}{9} \,{\left (3 \, a d^{3} x^{3} +{\left (3 \, x^{3} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right ) - \frac{{\left (c^{2} x^{2} + 1\right )}^{\frac{3}{2}} - 3 \, \sqrt{c^{2} x^{2} + 1}}{c^{3}}\right )} b d^{3}\right )} e \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^4*(a+b*arcsinh(c*x)),x, algorithm="giac")

[Out]

(x*log(c*x + sqrt(c^2*x^2 + 1)) - sqrt(c^2*x^2 + 1)/c)*b*d^4 + a*d^4*x + 1/2835*(315*a*x^9 + (315*x^9*log(c*x
+ sqrt(c^2*x^2 + 1)) - (35*(c^2*x^2 + 1)^(9/2) - 180*(c^2*x^2 + 1)^(7/2) + 378*(c^2*x^2 + 1)^(5/2) - 420*(c^2*
x^2 + 1)^(3/2) + 315*sqrt(c^2*x^2 + 1))/c^9)*b)*e^4 + 4/245*(35*a*d*x^7 + (35*x^7*log(c*x + sqrt(c^2*x^2 + 1))
 - (5*(c^2*x^2 + 1)^(7/2) - 21*(c^2*x^2 + 1)^(5/2) + 35*(c^2*x^2 + 1)^(3/2) - 35*sqrt(c^2*x^2 + 1))/c^7)*b*d)*
e^3 + 2/25*(15*a*d^2*x^5 + (15*x^5*log(c*x + sqrt(c^2*x^2 + 1)) - (3*(c^2*x^2 + 1)^(5/2) - 10*(c^2*x^2 + 1)^(3
/2) + 15*sqrt(c^2*x^2 + 1))/c^5)*b*d^2)*e^2 + 4/9*(3*a*d^3*x^3 + (3*x^3*log(c*x + sqrt(c^2*x^2 + 1)) - ((c^2*x
^2 + 1)^(3/2) - 3*sqrt(c^2*x^2 + 1))/c^3)*b*d^3)*e